EXTENDED -DOMAIN METHOD IN HEAT-CONDUCTION PROBLE MS
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An effective method for the solution of mathematical physics problems is discussed in the ex-
ample of heat-conduction problems. Numerical computations are carried out to illustrate the
accuracy and convergence of the method,

The basic idea of the method of extended domains is utilized primarily in elasticity problems [1-3], al-
though even in that area it has not been developed and applied to the extent that it should.

The method is based on a simple physical notion; it is extremely general and is well suited to computer
implementation, It can be used effectively for the solution of a broad sphere of problems in mathematical
physics. The substance of the method is as follows. A given domain D is immersed (conditionally) in a cer-
tain extended domain D', for which the fundamental solution of the initial differential equation of the problem
is known, The surface [' bounding D is treated in D' as a function of distributed sources, the strength of which
is to be determined, If that surface is partitioned into n finite elements and it is assumed that the density of
sources inside each element is, say, uniformly distributed there, then by satisfying the boundary conditions
at the midpoints of the surface elements we obtain a system of nondegenerate algebraic equations in the un-
known densities.

In the investigation of nonsteady problems it is necessary to introduce additional time quantization,
adopting a priori a certain distribution function for the densities of sources in application to each discrete
time interval, '

The extended-domain method has two important advantages: 1) The system of equations is formed solely
in terms of points of the boundary surface; 2) for each type of domain (plane, axisymmetric, three-dimensional)
the algorithm is general, regardless of the configuration of the domain or the type of boundary conditions.

Below, without sacrificing generality, we consider the planar heat-conduction problem for an arbitrary
anisotropic domain D bounded by a contour I'. Let the required function v(x, y, f) satisfy the following equa-
tion and initial and boundary conditions:
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It is assumed here that the coordinate axes coincide with the directions of the principal anisotropy axes, a; and
a, are constants, E, ¢, and f are given functions, and h is the normal to the contour I,

We take as the extended domain D' the unbounded plane, for which the known fundamental solution
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is interpreted as the temperature induced in the unbounded plane by the instantaneous release of heat by a
point source of unit strength at a point (x} y') of the plane D' at time t = 7.*

*In a number of situations it may be practical to use other extended domains D' (for example, a halfplane,
strip, etc.) and fundamental solutions in the form of Green (for R = 0), Neumann (R — =), or Robin (0 <R < %9
functions.
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We partition the contour I' into n sufficiently small rectilinear segments and assume that Qjp is the
strength of sources distributed uniformly on each j-th segment and acting continuously for a time interval
{tp-1, tpl G =1, n; p=1, K). Then the temperature of an arbitrary point of the domain D < D' at time t = ty,
satisfying Eq. (1) and the initial condition (2), is determined from the expression
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It is convenient from the standpoint of diminishing the number of equations and increasing the accuracy
to choose the segment lengths !j depending on the smoothness of the contour and the boundary condifions,

namely shorter lengths where the curvature is greater or where the boundary functions are joined or suffer
discontinuities.

After integration the function L;p and its derivatives with respect to the coordinates assume the form
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is the anisotropy parameter;
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is the integral exponential function; and
l /2
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To simplify the calculations itisusefulto approximate the probability integral, for example in the form
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where c; = 0,060025 and ¢, = 0,588787645. The error of approximation in this case is not greater than 0.25%,

As a result, the function F.(S) can be calculated according to the equation
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If we require that the boundary conditions (3) be satisfied successively at times t =ty (m =1, k) at the
midpoints of the contour I':
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we obtain the recursive system of equations
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The upper signs correspond to the outer contour of the domain D, and the lower signs to the inner contour, in
the clockwise direction. The diagonal elements of the principal matrix, being in fact the maximum in the row,
are computed according to the expression
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The number of equations of the system can be reduced if the problem has a plane of symmetry. When a uniform
time step is used up to the tim (—: tk, it is sufficient to compute the matrices [ci( )] (m = 1 k), since [ci( )] =
[cgz)] = [c(k [ciz)] = [c(llz 1, ete, Then the solution can be represented in the form

m—1
G} = 187 (Do} — 2 18™7F] (g}

p=1
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In the limiting steady-state situation where the source function is
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the required solution is represented by the sum
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and the quantities &j g and Ajg are the same as in expressions (5) and (6), The diagonal elements of the matrix
[c] are computed according to the equation
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To illustrate the convergence and accuracy of the given algorithms we have selected fo examples for im-
plementation on an M-222 computer.

Table 1 summarizes the results of computing the function v(x, y) for the well-known steady-state problem
in which the domain D is bounded by the equilateral triangle with unit side and at the boundary the functions
R(x, y) = 0 and f = x* + y? are given, This type of problem occurs in a number of applications of mathematical
physics.

The third and fourth columns of the table give the values of the function for partitions of the sides of the
triangle into, respectively, 10 and 20 equal segments of length !5 = 0.1 and lj = 0.05, and the fifth column cor-
responds fo the values of the functions for a nonuniform step: lj = 0.025 over one fourth the length from the
verfex of the triangle and [j = 0.075 over the remaining length, with preservation of the number of segments
n =20, For comparison the last column gives the exact values of the function. The origin of the coordinate
system Oxy was placed at the midpoint of the base of the triangle, with the axis Oxrunning along the base and
the axis Oy along the altitude,

In the implementation of nonsteady problems with the required accuracy, the degree of time quantization
depends mainly on the nature of the time variation of the boundary conditions. This fact is illustrated below in
a test problem.

Table 2 lists the errors (%) in the calculation of the temperature at points of an isotropic @ = @ = @) half-
plane x = 0, on the surface of which the temperature is given by one of the functions: f; = const; f, = t; f5 = t2,
The temperature is estimated for four values of the Fourier parameter (Fo = at/x% and two time-quantization
schemes.

It is important to note that the computing time can be shortened while simultaneously attaining a higher
accuracy by applying a certain prediction procedure (formula) to the results of a few successive solutions with
an increasing number of steps.
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TABLE 1. Comparison of Computed Values of Steady-State Function
v( X, y) with Exact Values for Three Quantizations of the Boundary of
a Triangular Domain

n=10 n==20
x g . Exactsolution
47=0,1 | 1;=0,05 |variablestep
0 0,05 0,041093 0,040962 0,040950 0,040945
0 0,1 0,077919 0,077776 0,077759 0,077757
] V36 0,194634 0,194467 0,194446 0,194444
0 0,6 0,409435 0,409076 0,409020 0,409030
0 0,8 0,645901 0,645376 0,644156 0,644026
0,3 V3/6 0,194558 0,194464 0,194461 0,194444

TABLE 2, Errors () for Three Laws of Heating
of a Halfplane and Two Time-Quantization Schemes

. f
const | t Iz [ Fo
50 —2,20 | 1,77 3,54 11
0 —1,00 0,92 1,75 ’
10 ~1,58 [,03 2,84 2.9
20 —0,72 0,49 1,12 ’
10 —0,78 0,57 1,91 10
20 —0,35 0,22 0,75
10 —0,57 0,45 1,15 %
20 —0,25 0,18 0,64
NOTATION

D is the given domain;

r is the boundary of given domain;

D is the extended domain;

v is the unknown function;

X, v, x, ¥ are the coordinates on the plane;

t, T, is the time;

¢ is the initial condition;

f is the boundary condition;

R is the thermal resistance;

h is the normal to domain boundary;

ai, a, are the thermal diffusivities along principal axes of anisotropy;

l is the length of contour segment;

q is the source strength;

n is the number of contour segments;

k is the number of time steps;

Xjs ¥j» Xi» Vi are the coordinates of contour points,
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